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Contents
• Basics of autonomy


• Example: self-driving cars


• Review of deep learning basics


• Case study: traffic sign recognition


• Training: backpropagation, stochastic gradient descent (SDG)


• Structure design: Convolution, pooling, and dropout
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Key component of an autonomy

3Fernández Llorca D, Gómez E. Trustworthy Autonomous Vehicles. Joint Research Centre (Seville site); 2021 Dec.
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Algorithmic structure

4Fernández Llorca D, Gómez E. Trustworthy Autonomous Vehicles. Joint Research Centre (Seville site); 2021 Dec.
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Technology Readiness Levels (TRLs) for each Level of Automation of AVs 

5Fernández Llorca D, Gómez E. Trustworthy Autonomous Vehicles. Joint Research Centre (Seville site); 2021 Dec.
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An example of a self-driving car

Computers

Sensors

Actuator

6

Drive 
PX 2

2 Nexcom Lumina

Intel i7, 120GB 

SATA HDD

MovAtel SPAN A1 
GPS+GLONASS, IMU, RTK

Velodyne 16 channel Lidar

360° Horizontal FOV, 30° Vertical FOV, up 

to 100 meters, Dual Returns

 PointGrey Camera

Webcam

IBEO LiDAR 

1 front 200 meters 


110°Horizontal 
3.2°Vertical

Delphi ESR 2.5: 

FOV: 60 m / 90°, 175m / 20°

Neobotix Ultrasonic 
Sensor: 12 at front 
and rear, 4 at side

Dataspeed:

By wire control: throttle, brake, 
gear,  steering, turning signal

10
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Global Navigation Satellite Systems

7

US (GPS) : 24 / 1995 EU (GALILEO): 30 / 2013

Russa (GLINASS): 24 / 2011 China (BeiDou): 35 / 2020

Num of satellites may be out of dated
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How GNSS Works

8

■ The Global Positioning System (GPS)

❑ 27 satellites orbiting the Earth at an altitude of 20,000 

km (24 in operation and three extras in case one fails).

❑ At least four satellites "visible" in the sky from 

anywhere on the earth.

❑ Satellites broadcast radio signals can be received by 

GPS units


■ How GPS works: Trilateration

❑ Needs at least three satellites


■ How to measure the distance to a satellite

❑ Use a pseudo-random code

❑ On a satellite: atomic clock; on a receiver: quartz clock

❑ Measure time lag to calculate distance
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Fundamental of Radar

9
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Lidar and Automated Vehicles

10

DARPA Grand Challenge (2004)

DARPA Urban Challenge (2007)

CMU’s Sandstorm (7.32/150 mi)

Team DAD (Digital Audio Drive)

30 inches in diameter, 100 lbs

Stanford’s Stanley

Google car

Sebastian Thrun

5 out of 6 teams that finished the 
course use Velodyne Lidar

Boss

CMU-GM Cadillac SRX

No one finished the test…

          (2005)→

UM-Ford Fusion

MIT’s Talos

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCL7FtoTS_8cCFRUVkgod0v0IUA&url=http://thefutureofthings.com/3019-darpas-urban-challenge-2007/&bvm=bv.103073922,d.aWw&psig=AFQjCNGRrdAXh9p0ky_cD-5ZuW4hJGw1hA&ust=1442633284336889
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Lidar types by laser channels

11

Solid state
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Radar+ LiDAR+Camera

12
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How to Use the Sensors

Hardware Integration

Sensor Calibration Sensor Fusion

Data Collection

Object Detection

13
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Camera Lidar Fusion Result

14
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Structure of the Automated Vehicle

15

Brake Turn-signalGearSteering Throttle

Drivers

Sensor actuator 
interface

Algorithm
SLAM, lane keeping, 

pedestrian 
detection…

Sensor 
subscrib

er

Velodyne

Lidar

Pointgrey

Actuator 
Publisher

Drive by 
wire

ROS

Perceive

Control Command

32
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ROS Network

ROS Kinect

16

Ubuntu 16.04 
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What is ROS (Robotic Operational System)

ROS provides 2000+ software libraries

The total line count is over 14 million lines 
of code

There have been 2,477 authors

In total 181,509 commits

17IEEE Spectrum
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ROS Hardware Support

Number of Sensors supported by ROS

0

5

10

15

20

2D range finders Speech Recognition Force/Torque/Touch Sensors Pose Estimation

18
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Real Time ROS Structure

Perception

+Decision

+ Control

usb_cam

delphi_esr

lux

GPS

Pointgrey

Velodynes

ROS 

interface

Drive-by-
wire node

Complicated

Vehicle 


Command
Simple


command Control

19

sensor_msgs

ImagePointCloud2NavSatFixImu
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[BONUS] Real Interview Case Study
• How to Build an AV from Scratch?

• Decide driving environment (urban, highway)

• Decide driving functional requirement (longitudinal, lateral, intersection)

• Decide hardware (sensors, actuators, computational units)

• Decide communication approach (middleware)

• Sensor calibration, synchronization

• Design high level algorithms (localization, detection, tracking, decision, control)

• Tests (simulation, on-track, naturalistic driving)

20
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Multi-sensor
• Selection of sensors: LiDARs, Cameras, infrared,  


• Calibration


• Synchronization

21
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Contents
• Basics of autonomy


• Example: self-driving cars


• Review of deep learning basics


• Case study: traffic sign recognition


• Training: backpropagation, stochastic gradient descent (SDG)


• Structure design: Convolution, pooling, and dropout

22
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Image data

23

• Image is represented as one 
large 3-dimensional array of 
numbers


• The stop image has 248 x 400 
pixels, so it has 248 x 400 x 3 = 
297,600 numbers


• Each number is an integer 
ranging from 0 to 255. 


• Our task: 

predict the label “street sign” (  )  
of this 297,600-sized vector (  )

y
x

street sign     13.5581 
umbrella        8.2581 
mortarboard  7.8784 
sweatshirt      7.8655 
envelope        7.7729 
… 

Image classification

What the computer sees
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• We use datasets to train models to perform this task 


• But, our goal is to use the models to predict the labels of unseen data

Image datasets

24Credits: https://cs231n.github.io

https://cs231n.github.io
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Training = Learning the model parameters

25

• Consider a linear model , where: 


•  :weight and bias parameters of the model 


• The parameters are obtained by solving optimization problem

f(x; W, b) = Wx + b

W, b

x
W f(x; W, b)

Credits: https://cs231n.github.io

mortarboard score

street sign score

umbrella score

https://cs231n.github.io
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Compact representation of parameters

26

• Compact representation: biases merged into weights  
 
 
 
 
 
 
  a scalar 1 is appended  

at the end

input image

new W

new x
x

W

Credits: https://cs231n.github.io

• The learned parameters determine 
the classifier boundary 

https://cs231n.github.io


Ding Zhao | CMU

Nonlinearities and deep models

27

• Nonlinearities are needed by deep learning to deal with problems beyond 
classical machine learning methods, added by the activation function 


• Example: Feedforward structure  with  layers:


• Input: 


• Pre-activation (logits): 


• Post-activation: 


σ( ⋅ )

f l

z0 = [x,1]

̂zk = Wkzk−1

zk = σ( ̂zk) … … … …

z0 zk−1 ̂zk zk

σWk

… …
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Nonlinearities and deep models

28

• Deep learning consists of multi-layered network with nonlinear activations




where 

L(y, ̂y) = L(x, y; W)

̂y = f(x; W)

x = z0 zk−1 ̂zk zk

… … … …

σWk

…

z0 zk−1 ̂zk zk

…

Wl

̂y = zl

Credits: punch-us.com

http://punch-us.com
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Loss functions
• Loss functions for regression:


• Mean Squared Error (MSE) 



• L1 loss or Mean Absolute Error (MAE): suitable when numerous outliers exist in the data 



• Huber loss (with param. ): mimics MSE (small ) and MAE (large  

L(x, y; W) = 1
N ∑N

i=1 (yi − f(xi; W))2

L(x, y; W) = 1
N ∑N

i=1 |yi − f(xi; W) |

δ δ δ)

Lδ(x, y; W) = 1
N ∑N

i=1 Li, Li =
1
2 (yi − f(xi; W))2  for  |yi − f(xi; W) | ≤ δ

δ |yi − f(xi; W) | − 1
2 δ2  otherwise 

29https://www.evergreeninnovations.co/blog-machine-learning-loss-functions/

def Huber(f, y, delta=1.):

    return np.where(np.abs(y-f) < delta,.5*(y-f)**2 , delta*(np.abs(y-f)-0.5*delta))



Ding Zhao | CMU

Loss functions

30

• Loss functions for classification:

• Cross entropy (softmax) loss: suitable for model  

whose output is a probability value between 0 and 1 
(max likelihood of the correct choice)



• Hinge loss:  penalizes both the wrong predictions 

and the right predictions that are closed to the 
margin. , . When  and  have the same 
sign (meaning  predicts the right class) and , 
the hinge loss is 0. When they have opposite signs, 
increases linearly with y, and similarly if , 
even if it has the same sign (correct prediction, but 
not by enough margin), which contra SVM) 

f

L(x, y; W) = ∑N
i=1 − yi ⋅ log f(xi; W) − (1 − yi) ⋅ log(1 − f(xi; W))

y = ± 1 f ∈ ℝ f y
f |y | ≥ 1

|y | < 1

L(x, y; W) = ∑N
i=1 max{0,1 − f(xi; W) ⋅ yi}

https://rohanvarma.me/Loss-Functions/

More info: lecture 2, 3 
http://cs231n.stanford.edu

def CrossEntropy(f, y):

    if y == 1:

      return -log(f)

    else:

      return -log(1 - f)

def Hinge(f, y):

    return np.max(0, y - f*y)
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̂y = zl

Training process: Forward pass

31

• The training minimizes the expected loss: 


• Forward pass: obtaining the value of expected loss

min
W

J(W) = 𝔼p(x,y)[L(x, y; W)]

J(W)L(y, ̂y) = L(x, y; W)

x = z0 zk−1 ̂zk zk

… … … …

σkWk

…

…

x = z0 zk−1 ̂zk zk

…

Wl
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Training process: Backpropagation

32

• To optimize  (weight at layer ), the solver needs gradient 


• Backpropagation: Efficiently computing gradients w.r.t. parameters


• Chain rule: 


Wk k ∂J/∂Wk

∂J
∂Wk

=
∂J
∂L

⋅
∂L
∂zl

⋅
∂zl

∂ ̂zl
⋅

∂ ̂zl

∂zl−1
⋅ ⋯ ⋅

∂ ̂zk+1

∂zk
⋅

∂zk

∂ ̂zk
⋅

∂ ̂zk

∂Wk

x = z0 zk−1 ̂zk zk

… … … …

σkWk

…

…

x = z0 zk−1 ̂zk zk

J(W)L(y, ̂y) = L(x, y, W)

̂y = zl

…

Wl
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Regularization

33

• The problem involves large space  so we wish to obtain “well-behaved” solution


• attained by adding penalty term  to the training objective

• discourages learning too complex model, to avoid overfitting


• Some widely used regularization functions. Let  be a vector


• L1 regularizer: 


• L2 regularizer: 


• Lp regularizer: 


• L  regularizer: 

• Popular loss functions: 


• Ridge: 


• Lasso (Least absolute shrinkage and selection operator): 

W ∈ 𝒲
R(W)

W
∥W∥1 = ∑i |Wi |

∥W∥2
2 = ∑i W2

i

∥W∥p
p = ∑n

i=1 |Wi |
p

∞ ∥W∥∞ = max( |W1 | , …, |Wn | )

∑N
i=1 (yi − f(xi; W))2 + λ∥W∥2

2

∑N
i=1 (yi − f(xi; W))2 + λ∥W∥1
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Minimizing the regularized loss

34

• 


• In practice, use (stochastic) samples: 


                    


• Gradient descent: At iteration , updates  
where  is the learning rate.


•  is often approximated via  
sample , i.e., Stochastic Gradient 
Descent (SGD) 

minW J(W) = 𝔼 [L(x, y; W)] + λR(W)

minW
̂J(W) = 1

n ∑n
i=1 L(xi, yi; W) + λR(W)

t W(t+1) = W(t) − η∇J (W(t))
η

∇J
∇̂J

J(W)

direction of  
−∇J(Wt)

−η∇J (W(t)) W(t)

Credits: https://cs231n.github.io  
https://www.youtube.com/watch?v=b4Vyma9wPHo

https://cs231n.github.io
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Convolution operations

35

• Convolution is the sliding of a kernel over an input data (multiply the 
corresponding numbers and sum the results up)


• The sliding scale is called stride.

• Example: 2x2 kernel applied to 6x6 input with stride 1

• Output size: 5x5

Credits: http://makeyourownneuralnetwork.blogspot.com/
2020/02/calculating-output-size-of-convolutions.html
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Convolution operations

36

• Example: 2x2 kernel applied to 6x6 input with stride 2


• Output size: 3x3

Credits: http://makeyourownneuralnetwork.blogspot.com/
2020/02/calculating-output-size-of-convolutions.html
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Convolution operations

37

• We can control the output size by adding padding


• Example: 2x2 kernel applied to 6x6 input with stride 2 and padding 1


• Output size: 4x4

Credits: CMU 10701Credits: http://makeyourownneuralnetwork.blogspot.com/
2020/02/calculating-output-size-of-convolutions.html

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf
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Convolution operations

38

• Determining output size 
 
 
 
 
 
 

• Example: 2x2 kernel applied to 6x6 input with stride 2 and padding 1 

Output size = n′￼ = ⌊ 6 + 2(1) − (2 − 1) − 1
2

+ 1⌋ = ⌊ 6
2

+ 1⌋ = 4

Credits: CMU 10701

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf
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Pooling

39
Credits: CMU 10701, Baeldung

max = 6

max = 3

max = 8

max = 4

Max pooling with filter 2x2 and stride 2

http://www.cs.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf
https://www.baeldung.com/cs/ml-relu-dropout-layers
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Dropout

40

x = z0 zk−1 ̂zk zk

… … … …

σkWk

…

…

x = z0 zk−1 ̂zk zk zk

…

Wl

x = z0 zk−1 ̂zk zk

… … … …

σkWk

…

…

x = z0 zk−1 ̂zk zk zk

…

Wl

Original model

Dropout 0 0

Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Nitish Srivastava, Geoffrey Hinton, Alex 
Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov; JMLR, 15(56):1929−1958, 2014.
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Design deep learning structures

41

• AlexNet 


• VGGNet


• ResNet


• Inception (GoogLeNet)

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
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AlexNet

42

• This was one of the first 
Deep convolutional 
networks to achieve 
considerable accuracy on 
the 2012 ImageNet  
challenge


• With an accuracy of 
84.7% as compared to 
the second-best with an 
accuracy of 73.8%.

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
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VGGNet

43

• Multiple variants of VGGNet (VGG16, VGG19, etc.) which 
differ only in the total number of layers in the network.

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). 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VGGNet
• VGGNet was born out of the need to 

reduce the # of parameters in the CONV 
layers and improve on training time.


• How?

• All the variable size convolutional 

kernels used in Alexnet (11x11, 5x5, 
3x3) can be replicated by making use 
of multiple 3x3 kernels as building 
blocks


• For a 5x5 conv layer filter, the number 
of variables is 25. However, two conv 
layers of kernel size 3x3 have a total 
of 3x3x2=18 variables (a reduction of 
28%).

44https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
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ResNet
• Vanishing gradient problem


• As we make the CNN deeper, the derivative when back-
propagating to the initial layers becomes almost insignificant 
in value.


• ResNet addresses this network by introducing ‘shortcut 
connections’


• Multiple versions of ResNetXX architectures where ‘XX’ 
denotes the number of layers. The most commonly used 
ones are ResNet50 and ResNet101. CNN started to get 
deeper and deeper, since the vanishing gradient problem 
was taken care of.

45
https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
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https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
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Inception/GoogLeNet (Inception v-1)

47Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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Inception/GoogLeNet (Inception v-1)
• Deciding on a fixed kernel size is rather 

difficult. 

• Lager kernels are preferred for more 

global features that are distributed over 
a large area of the image


• Smaller kernels provide good results in 
detecting area-specific features that 
are distributed across the image frame. 


• For effective recognition of such a 
variable-sized feature, we need kernels of 
different sizes. 

• Instead of simply going deeper in 

terms of the number of layers, it goes 
wider. Multiple kernels of different sizes 
are implemented within the same layer.

48

The 1x1 conv blocks shown in yellow are used for depth reduction

Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
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Design deep learning structures

49

• AlexNet 


• VGGNet


• ResNet


• Inception (GoogLeNet)

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96



Ding Zhao | CMU

Pointnet (3D point cloud)

50
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Summary
• Deep learning basics (automatic feature extraction)


• Classification task and basic neural network architecture


• Training of neural network


• More complex deep learning models

51
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• Deep learning basics 
Stanford CS231. CNN for image recognition. https://cs231n.github.io  

Worth Reading

52

https://cs231n.github.io

